Simulation Model

Finned Water-to-Air Coil without Condensation

Michael Wetter*
Simulation Research Group
Building Technologies Department
Environmental Energy Technologies Division
Lawrence Berkeley National Laboratory
Berkeley, CA 94720

January 1999

* Visiting Researcher. This work was sponsored by a grant from the Swiss Academy of Engineering Sciences (SATW) and the Swiss National Science Foundation (SNSF). This work was partially supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Systems of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
Simulation Model

Finned Water-to-Air Coil without Condensation

November 1998

Note:

This model will be a part of the HVAC component and system library for the SPARK simulation program.

The library is currently under development.

Simulation Research Group
Building Technologies Department
Environmental Energy Technologies Division
Lawrence Berkeley National Laboratory
Berkeley, CA 94720

Michael Wetter
Visiting Scientist
Finned Water-to-Air Coil without Condensation

Abstract

A simple simulation model of a finned water-to-air coil without condensation is presented. The model belongs to a collection of simulation models that allows efficient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is short computation time and use of input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part load operation mode, which is becoming increasingly important for energy efficient HVAC systems. The models are intended to be used for yearly energy calculation or load calculation with time steps of about 10 minutes or larger. Short-time dynamic effects, which are of interest for different aspects of control performance, are neglected. The part load behavior of the coil is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature on the water side and the air side. The effectiveness-NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part load conditions. Geometrical data for the coil are not required. The calculation of the convective heat transfer coefficients at nominal conditions is based on the ratio of the air side heat transfer coefficients multiplied by the fin efficiency and divided by the water side heat transfer coefficient. In this approach, the only geometrical information required are the cross section areas, which are needed to calculate the fluid velocities. The formulas for estimating this ratio are presented. For simplicity the model ignores condensation. The model is static and uses only explicit equations. The explicit formulation ensures short computation time and numerical stability. This allows using the model with sophisticated engineering methods such as automatic system optimization. The paper fully outlines the algorithm description and its simplifications. It is not tailored for a particular simulation program to ensure easy implementation in any simulation program.

Introduction

Most water-to-air coil simulation models are based on input data that are hard to obtain by the HVAC system designer, such as the fin spacing. The models are usually developed for research work rather than for system design and most of them are rather complex, with only few that have been broken down into the most important laws that describe their physical behavior accurately enough for system design.

The available simple models for water-to-air coils usually do not take the dependence of the convective heat transfer coefficient on the air mass flow and temperature into account. The more detailed models that address this dependence require geometrical knowledge of the exchanger, which is often not available during the design process of an HVAC system ([Brandemuehl et.al. 93], [TRNSYS 96]).

The model that we have developed describes the steady-state part load behavior using a dimensionless variation of the sensible heat transfer at nominal conditions. The air side and water side heat transfer coefficients at nominal conditions are computed based on nominal inlet mass flows and temperatures, the air outlet temperature and the ratio of the air side heat transfer coefficient times the fin efficiency divided by the water side heat transfer coefficient. To minimize energy loss, this ratio should be unity. But for cost reasons unity might not be achieved. The ratio can be determined from detailed calculations of the heat transfer coefficient or from an approximation based on curve fit done by Holmes [Holmes 82].

The dependence of the convective heat transfer coefficient on the mass flow variation and temperature variation is taken into account for both fluids.

An iteration is only required during the model initialization if the model is used as a cross flow heat exchanger with both streams unmixed. For all other flow configurations, no iteration is required. The numerical solution has to be done only once during the whole simulation. Convergence of the numerical solution is guaranteed.
General Description

The model represents the static behavior of a finned heating or cooling coil. Water circulates through the tubes and air passes over the finned outside of the tubes. Condensation is neglected. The main purpose of this model is to calculate the yearly energy consumption of an HVAC system.

Since condensation is ignored it should be used with care in climates where the dew point temperature of the air frequently drops below the coil surface temperature.

The input to the model are the air-side and water-side inlet mass flows and temperatures, the heat transfer coefficient, and the ratio between the \((h \cdot A)\) values of the water side and air side, all at the nominal operating point. No geometrical data are used. The model computes the outlet temperature on both water and air side as a function of the inlet conditions. The dependence of the convective heat transfer coefficient on the fluid velocity and temperature is taken into account for both fluids.

Simplifications

- static model
- no condensation
- fouling neglected
- thermal resistance of the heat exchanger material neglected
- fin efficiency independent of capacity flow
- no heat loss to the environment

Abbreviation

Variables

- \(C\) capacity rate
- \(c\) specific heat capacity
- \(c\) constant
- \(d\) diameter
- \(h\) convective heat transfer coefficient
- \(k\) thermal conductivity
- \(m\) mass flow
- \(n\) exponent for air side heat transfer coefficient
- \(NTU\) number of exchanger heat transfer units
- \(Nu\) Nusselt number
- \(Q\) heat transfer rate
- \(R\) thermal resistance
- \(r\) ratio of heat transfer
- \(Re\) Reynolds number
- \(s\) relative sensitivity
- \(U\) heat transfer coefficient
- \(V\) velocity
- \(x\) factor for thermal variation of fluid properties
- \(Z\) capacity rate ratio

Subscripts

- \(0\) nominal (design) point
- \(a\) air
- \(avg\) average
- \(f\) fin
- \(i\) inner
- \(in\) inlet
- \(max\) maximum
- \(min\) minimum
- \(out\) outlet
- \(r\) fin root
- \(w\) water

\(\varepsilon\) exchanger heat transfer effectiveness
\(\vartheta\) temperature
\(\rho\) density
\(\eta\) efficiency
\(\mu\) dynamic viscosity
\(\nu\) kinematic viscosity
\(\xi\) small positive number (\(\xi << 1\))
\(A\) area
Mathematical Description

Exchanger Heat Transfer Effectiveness

The dimensionless exchanger heat transfer effectiveness, ε, is defined as the actual heat transfer divided by the maximum possible heat transfer [ASHRAE 85]:

$$\varepsilon = \frac{\dot{Q}}{\dot{Q}_{\text{max}}}$$

Eq. 1

If the heat loss of the heat exchanger to the environment is neglected and no phase change occurs, the heat balance of the fluid streams can be written as

$$\dot{Q} = \dot{C}_w (\vartheta_{w,in} - \vartheta_{w,out}) = \dot{C}_a (\vartheta_{a,out} - \vartheta_{a,in})$$

Eq. 2

where C stands for the capacity flow

$$\dot{C} = m c_p$$

Eq. 3

The maximum heat exchange is given by the product of the lower capacity flow and the inlet temperature difference, i.e.,

$$\dot{Q}_{\text{max}} = \dot{C}_{\text{min}} |\vartheta_{w,in} - \vartheta_{a,in}|$$

Eq. 4

with

$$\dot{C}_{\text{min}} = \min(\dot{C}_a, \dot{C}_w)$$

Eq. 5

Substituting Eq. 2 and Eq. 4 into Eq. 1, the exchanger heat transfer effectiveness can be computed by

$$\varepsilon = \frac{\dot{C}_a (\vartheta_{a,in} - \vartheta_{a,out})}{\dot{C}_{\text{min}} (\vartheta_{a,in} - \vartheta_{a,in})}$$

Eq. 6

and similarly

$$\varepsilon = \frac{\dot{C}_w (\vartheta_{w,in} - \vartheta_{w,out})}{\dot{C}_{\text{min}} (\vartheta_{w,in} - \vartheta_{w,in})}$$

Eq. 7

Number of Exchanger Heat Transfer Units

The effectiveness can also be expressed as a function of the Number of Heat Transfer Units, NTU, the capacity rate ratio, Z, and the flow arrangement over the heat exchanger:

$$\varepsilon = f(NTU, Z, \text{flow arrangement})$$

Eq. 8

with the dimensionless capacity rate ratio

$$Z = \frac{\dot{C}_{\text{min}}}{\dot{C}_{\text{max}}}$$

Eq. 9

and the dimensionless Number of Transfer Units

$$NTU = \frac{U_{\text{avg}} A}{\dot{C}_{\text{min}}}$$

Eq. 10

Table 1 lists ε-NTU relations for different flow arrangements. Single-row heating and cooling coils can be considered to be cross flow heat exchangers with C_{max} mixed and C_{min} unmixed. Coils with two or more rows can be considered to be counter flow heat exchangers. Experiments have shown that these two equations are sufficient to define the performance of typical coils [Holmes 82].
Table 1: Equations for the exchanger heat transfer effectiveness, ε, and its inverse for NTU for different heat exchanger configurations (Eq. 11, see [Kays, London 84], Eq. 13 see [Holman 76], Eq. 15 see [Incropera, DeWitt 90], Eq. 17 see [Incropera, DeWitt 90])

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Equation</th>
</tr>
</thead>
</table>
| Counter flow (Coil with two or more rows) | $\varepsilon(Z \neq 1) = \frac{1 - e^{-NTU(1-Z)}}{1 - Z e^{-NTU(1-Z)}}$
\[\lim_{Z \to 1} \left(\frac{1 - e^{-NTU(1-Z)}}{1 - Z e^{-NTU(1-Z)}} \right) = \frac{1}{1 + NTU^{-1}} \]
| Possible range: $0 \leq \varepsilon \leq 1$ | $NTU(Z \neq 1) = \frac{1 - \varepsilon}{Z - 1} \ln\left(\frac{1 - \varepsilon}{1 - \varepsilon Z}\right)$
\[\lim_{Z \to 1} \left(\frac{1 - \varepsilon}{Z - 1} \ln\left(\frac{1 - \varepsilon}{1 - \varepsilon Z}\right) \right) = \frac{\varepsilon}{1 - \varepsilon} \] |
| Parallel flow | $\varepsilon = \frac{1 - e^{-NTU(1+Z)}}{1 + Z}$
| Possible range: $0 \leq \varepsilon \leq \frac{1}{1 + Z}$ | $NTU = -\ln\left(\frac{1 - \varepsilon - \varepsilon Z + 1}{Z + 1}\right)$ |
| Cross flow, both streams unmixed | $\varepsilon = 1 - \exp\left(\frac{e^{-NTU} Z \eta - 1}{Z \eta}\right)$
with $\eta = NTU^{-0.22}$
| Possible range: $0 \leq \varepsilon \leq 1$ | $NTU = f(\varepsilon, NTU, Z)$
| Cross flow (single pass), C_{mix} mixed and C_{min} unmixed. (Coil with one row) | $\varepsilon = 1 - \exp\left(-Z \left(1 - e^{-NTU}\right) \right)$
| Possible range: $0 \leq \varepsilon \leq \frac{1 - e^{-Z}}{Z}$ | $NTU = -\ln\left(1 + \frac{\ln(1 - \varepsilon Z)}{Z}\right)$
| | $\lim_{Z \to 0} NTU = -\ln(1 - \varepsilon)$ |

$\lim_{Z \to 0} 1 - e^{-Z} = 1$
$\lim_{Z \to 0} \frac{1 - e^{-Z}}{Z} = 1$
and
$0 \leq \varepsilon Z \leq 1 - e^{Z(\varepsilon^{-1})}$

For all configurations $\lim_{Z \to 0} \varepsilon = 1 - e^{-NTU}$

42355.doc 6
As shown later, NTU_0 is calculated in that model as a function of ε_0, which is computed from Eq. 6.

If the user enters wrong input values for Eq. 6, ε_0 might have a value that cannot be obtained with the selected flow arrangement. In this case the logarithms in the equations for NTU_0 as a function of ε_0 could become undefined. It is recommended that these wrong inputs be detected by checking if ε_0 is inside the bounds listed in Table 1 before proceeding with the NTU_0 calculations.

Since there are two logarithms in Eq. 18, we have to examine the feasible range of the product $\varepsilon \cdot Z$ in more detail. The argument of the outer logarithm is allowable if

$$1 + \frac{\ln(1 - \varepsilon \cdot Z)}{Z} \geq \xi, \quad \xi << 1$$

Eq. 20

Since the capacity rate, Z, is always non-negative, this inequality can be written in the form

$$\ln(1 - \varepsilon \cdot Z) \geq Z (\xi - 1)$$

Eq. 21

And, after exponentiating both sides and isolating $\varepsilon \cdot Z$, we get

$$\varepsilon \cdot Z \leq 1 - e^{Z (\xi - 1)}$$

Eq. 22

From the definition of Z and ξ, the right hand side is always smaller than unity (but still bigger than zero). Therefore, satisfying Eq. 22 automatically ensures that both of the logarithms in Eq. 18 are defined.

Eq. 15 is exact only for $Z = 1$, but can be used for $0 < Z \leq 1$ as an excellent approximation [Incropera, DeWitt 90].

Note that Eq. 15 can not be solved analytically for NTU. However, as showed in [Wetter 98], the solution for NTU is unique if it is written in the form

$$1 - \exp\left(\frac{e^{-NTU \cdot 0.22}}{Z \cdot NTU} - 1\right) - \varepsilon = 0$$

Eq. 23

and solved for NTU using an algorithm such as Regula Falsi or Bisection. The efficiency of the algorithm is not critical since Eq. 23 has to be solved only once during the whole simulation.
Outlet Temperatures

If the heat exchanger effectiveness is known, we can compute the outlet temperature of both streams by using Eq. 6 or Eq. 7 respectively, which gives

\[\vartheta_{a,\text{out}} = \vartheta_{a,\text{in}} - \varepsilon \frac{C_{\min}}{C_a} (\vartheta_{a,\text{in}} - \vartheta_{w,\text{in}}) \]

Eq. 24

\[\vartheta_{w,\text{out}} = \vartheta_{w,\text{in}} + \varepsilon \frac{C_{\min}}{C_w} (\vartheta_{a,\text{in}} - \vartheta_{w,\text{in}}) \]

Eq. 25

Heat Transfer

The Number of Transfer Units depends on the product of the heat exchanger area and the overall coefficient of heat transfer from fluid to fluid, \((U_{\text{avg}} A)\).

For a finned pipe, \((U_{\text{avg}} A)\) can be written as

\[(U_{\text{avg}} A) = \frac{1}{\left(\frac{1}{h A_S} + \frac{1}{U A} \right)_f} \]

Eq. 26

where \((1/(h A_S))^*\) stands for the thermal resistance from the air-side pipe surface to the air. Hence, it consists of the thermal resistance of the fins and the convective heat transfer from the fin surface to the air and from the pipe surface to the air, i.e.,

\[\left(\frac{1}{h A} \right)^* = f \left(\frac{1}{U A} \right)_f, \left(\frac{1}{h A} \right)_w \]

Eq. 27

The thermal resistance of the convective heat transfers is much bigger than the thermal resistance of the pipe, i.e.,

\[\left(\frac{1}{U A} \right)_{\text{pipe}} \ll \left(\frac{1}{h A} \right)_w + \left(\frac{1}{h A} \right)^* \]

Eq. 28

Therefore, the resistance of the pipe can be neglected, leading to

\[(U_{\text{avg}} A) = \frac{1}{\left(\frac{1}{h A} \right)_w + \left(\frac{1}{h A} \right)^*} \]

Eq. 29

In the steady state, the heat transfer between the root of the fin and the air is

\[Q = (h A)^* f (\vartheta_s - \vartheta_a) \]

Eq. 30

The heat transfer from the fin surface to the air can be calculated according to

\[Q = \int h_a (\vartheta_f - \vartheta_a) dA \]

Eq. 31

where \(h_a\) is the convective heat transfer coefficient from the fin surface to the air and \(\vartheta_f\) the local fin temperature.

The fin efficiency, \(\eta_f\), is defined as the quotient of the heat transferred from the fin to the air divided by the heat that would have been transferred if the whole fin were at its root temperature, i.e.,

\[\eta_f = \frac{\int h_a (\vartheta_f - \vartheta_a) dA}{\int h_a (\vartheta_r - \vartheta_a) dA} \]

Eq. 32
Using Eq. 30, we can express the thermal resistance from the fin root to the air by

$$\frac{1}{(hA)_{a}} = \frac{(\vartheta_{r} - \vartheta_{a})}{Q}$$

Eq. 33

Substituting Q in Eq. 33 with Eq. 31 leads to

$$\frac{1}{(hA)_{a}} = \int h_{a} (\vartheta_{r} - \vartheta_{a}) dA$$

Eq. 34

The divisor of the right hand side of Eq. 34 can be substituted using the definition of the fin efficiency (Eq. 32). Assuming that h_{a} is constant over the whole fin, we get

$$\frac{1}{(hA)_{a}} = \frac{(\vartheta_{r} - \vartheta_{a})}{\eta_{f} \int h_{a} (\vartheta_{r} - \vartheta_{a}) dA}
= \frac{(\vartheta_{r} - \vartheta_{a})}{\eta_{f} h_{a} (\vartheta_{r} - \vartheta_{a}) \int dA}
= \frac{1}{\eta_{f} (hA)_{a}}$$

Eq. 35

Now, we can rewrite Eq. 29 by using Eq. 35, which gives

$$Au = \left(\frac{1}{(hA)_{w}} + \frac{1}{(hA)_{a}} \right)^{-1}$$

Eq. 36

The (hA) values can usually not be determined, unless the geometry of the heat exchanger is known. However, to determine the $(hA)_{w}$ values at the nominal operating point, we can use the $(U_{avg}A)_{w}$ value calculated from NTU_{0} (Eq. 10, at the nominal point). The NTU_{0} value itself depends only on the inlet condition (temperature and mass flow) of both streams, the required heat transfer rate, Q_{0}, and the flow arrangement. These data are already known in the design process since they are required to specify the heat exchanger.

Ratio of Convective Heat Transfer

To determine both heat transfer rates, $(hA)_{w,0}$, we only have to know either one of them or their ratio, r. We define the ratio of the convective heat transfers by

Definition:

$$r = \frac{\eta_{f} (hA)_{a}}{(hA)_{w}}$$

Eq. 37

Solving Eq. 37 for the dividend and inserting into Eq. 36 (solved for the required convective heat transfer on the water side) gives

$$\frac{(hA)_{w,0}}{(hA)_{w}} = \frac{r + 1}{r}$$

Eq. 38

And, similarly, for the air side:

$$\eta_{f} (hA)_{a,0} = r (hA)_{a,0}$$

Eq. 39

One goal of heat exchanger design is to ensure that the convective heat transfer is similar on both sides. However, r is a user input since $r = 1$ is usually not possible for cost reasons. This makes the model more flexible, particularly if more detailed knowledge about the convective heat transfer coefficient is known.

There are different ways to calculate r. Determining $(hA)_{w}$ from geometrical data is usually not possible in early design. However, if one knows the convective heat transfer on one side and the $(U_{avg}A)$ value, then r can be computed easily by combining Eq. 36 and Eq. 37, which gives

$$r = \frac{(U_{avg}A)}{(hA)_{w} - (U_{avg}A)}$$

Eq. 40

or

$$r = \frac{\eta_{f} (hA)_{a} - (U_{avg}A)}{(U_{avg}A)}$$

Eq. 41
Another way of calculating r is to use an approximation for both convective heat transfers. Holmes lists some approximation formulas for the thermal resistance of heating and cooling coils [Holmes 82]. He did a curve fit of the thermal resistance of different coils. The thermal resistance per row is described by

$$R = a_1 V_a^{-0.8} + a_2 V_w^{-0.8} + a_3$$

Eq. 42

where V_a is the face air velocity of the heat exchanger and the reference surface of the thermal resistance is the exchanger face area. Typical values for the constants are shown in Table 2.

<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating coil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low efficiency (low number of fins, no agitators)</td>
<td>1.32</td>
<td>0.44</td>
<td>0.49</td>
</tr>
<tr>
<td>Nominal coil (low number of fins, agitator)</td>
<td>1.1</td>
<td>0.2</td>
<td>0.38</td>
</tr>
<tr>
<td>High efficiency (more fins, agitators)</td>
<td>0.68</td>
<td>0.2</td>
<td>0.38</td>
</tr>
<tr>
<td>Cooling coil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High fin spacing</td>
<td>1.025</td>
<td>0.208</td>
<td>0.326</td>
</tr>
</tbody>
</table>

Table 2: Coefficients for approximating the thermal resistance of different coils [Holmes 82]

Since the coefficients of Eq. 42 are obtained by curve fitting, the coefficient a_3 might also contain part of the convective thermal resistance, even though a_3 is independent on the fluid velocity. The coefficients a_1 and a_2 clearly describe the dependence of the corresponding fluid flow only.

The convective heat transfer for the air and water side can, therefore, be written as

$$\frac{1}{\eta_f (h A)_{w,0}} = \frac{1}{A} \left(a_1 V_a^{-0.8} + f_1(a_3) \right)$$

Eq. 43

and

$$\frac{1}{(h A)_{w,0}} = \frac{1}{A} \left(a_2 V_w^{-0.8} + f_2(a_3) \right)$$

Eq. 44

where the unknown functions f_1 and f_2 indicate that part of the constant a_3 might be attributed to the convective heat transfer.

Assuming that the convective heat transfers depend mainly on turbulence, which is described by the fluid velocity, and depend only weakly on heat diffusion, we can neglect the constant terms in the convective heat transfer. Thus, for an approximation to the convective heat transfer ratio we get

$$r \approx \frac{a_2}{a_1} \left(\frac{V_w}{V_{w,0}} \right)^{0.8}$$

Eq. 45

Fig. 1 shows r according to Eq. 45 for a heating coil at nominal conditions as a function of the two air velocities.